Diabetic Nephropathy among Adult Patients with Type 2 Diabetes Mellitus in Saudi Arabia

Ahmed Dakhel Alrehaili 1, Khaled Mohammed Almuraydhi 2, Mustafa Taher Ali AL Essa 3, Abdullah Mohammed A Aljabir 4, Yaser Yousef Khogheer 5, Mohammed Walid Adham 6, Musaab Mohammad A. Alshanqeti 7, Ibrahim Mohammed I Eid 8, Sultan Ahmed M. Alburayk 9, Mohammed Alean Albalawi 10, Moath Mohammad Alothman 11, Ahmad Abdullah Algarini 12
1-King Faisal University, 2- King Fahad Hospital Alhofz, 3-Prince Saud Bin Jalawy Hospital (Al Ahsa), 4- Khannis Mubshi Ben Sina PHC, 5- East Jeddah Hospital, 6- King Fahad Hospital Jeddah, 7- Umm Alqura University, 8- King Saud Bin Abdulaziz University for Health Sciences, 9- King Salman Hospital, Saudi Arabia, Riyadh, 10- Madinah PHC, 11- PHC at Dammam City, 12- King Abdulaziz Hospital

ABSTRACT

Background: The occurrences of diabetes mellitus and diabetic nephropathy have increased quickly in the past few decades and have become an economic burden to the healthcare system in KSA. Diabetic nephropathy is a major complication of diabetes mellitus and is a primary cause of end-stage renal disease (ESRD). The occurrence of non-diabetic renal disease (NDRD) in diabetic patients has been increasingly recognized in recent years. It is generally believed that it is difficult to reverse diabetic nephropathy, whereas some cases of non-diabetic renal disease are readily treatable and remittable. However, diabetic nephropathy is known to co-exist with non-diabetic renal disease in a poorly defined population of patients with type 2 diabetes mellitus. This study estimated the pervasiveness of co-existing diabetic nephropathy and non-diabetic renal disease in Saudi patients.

Methods: Data were retrospectively analyzed from 122 patients with type 2 diabetes mellitus who had experienced a renal biopsy between February 2014 and June 2017 at King Abdulaziz Hospital, region(s), KSA. Male patients numbered 75 (61.5%) of the study population. The biopsies were performed as urinary abnormalities or renal functions were atypical of a diagnosis of diabetic nephropathy. Biopsy samples were examined using light, immunofluorescence (IF) and electron microscopy (EM). Clinical parameters were recorded for each patient at the time of biopsy.

Results: Nineteen of 122 diabetic patients (8%) had co-existing diabetic nephropathy and non-diabetic renal disease. These patients showed clinical features and pathologic characteristics of diabetic nephropathy, containing a high prevalence of diabetic retinopathy (88.8%), a long duration of diabetes, increased thickness of the glomerular basement membrane (GBM) and mesangial expansion. Nonetheless, they similarly presented with clinical findings which were inconsistent with diabetic nephropathy, such as hematuria, rapidly progressive renal failure and marked proteinuria. Immunoglobulin A (IgA) nephropathy was apparent in 5 out of the 10 patients (50%), tubulointerstitial lesions were found in two patients (20%), membranoproliferative glomerulonephritis (MPGN) in two patients (20%) and membranous nephropathy (MN) in one patients (10%).

Conclusion: retrospective analysis of biopsy data suggests that approximately 8% of Saudi patients with type 2 diabetes mellitus may have co-existing diabetic nephropathy and non-diabetic renal disease. The most common histological diagnosis in our small series was IgA nephropathy.

Keywords: Diabetic nephropathy, Renal histopathology, Non-diabetic renal disease, Renal biopsy, Diabetes mellitus.

INTRODUCTION

The occurrence of diabetes mellitus (DM) and diabetic nephropathy (DN) have increased quickly in the past few decades and have become an economic burden to the healthcare system in KSA. Diabetic nephropathy, also known as diabetic glomerulosclerosis or diabetic kidney disease, is a major complication of DM and is a leading cause of end-stage renal disease (ESRD). Persistent and slowly progressive proteinuria is a characteristic of DN and diabetic renal failure [1,2,3]. The diagnosis of diabetic nephropathy is regularly inferred in cases where renal biopsy has not produced definitive outcomes. These are regularly patients with a 7 to 10-year history of type I DM, who have demonstrable diabetic retinopathy and a history of microalbuminuria. These patients present no indication of a sudden start of marked proteinuria, abnormal kidney size, hematuria, or other renal disease [4,5]. Renal biopsy in this setting will not be diagnostically useful, whereas it will be inferred as diabetic nephropathy [6]. Most of our knowledge regarding the nature of kidney illness in patients with type 2 diabetes mellitus (T2DM) is derived from studies of patients with type I diabetes mellitus [1]. Nonetheless, biopsy data from patients with type
Diabetic Nephropathy among Adult Patients...

2 diabetes mellitus with renal disease or proteinuria present that these patients have a more heterogeneous group of renal lesions than patients with type I diabetes mellitus [6-7]. Based on these results the incidence of non-diabetic renal disease (NDRD) in diabetic patients has been increasingly acknowledged in recent years. Nonetheless, the pervasiveness of non-diabetic renal disease differs extensively in different areas of the world and is stated to range from 15.7% to 82.9%. [8-17]. The current retrospective, single center, analysis was undertaken to evaluate the pervasiveness of DN complicating non-diabetic renal disease in Saudi patients with type 2 diabetes mellitus. The pathogenic mechanism of DN that complicates non-diabetic renal disease is thought to be different to the mechanisms that underlie either DN or non-diabetic renal disease alone. We consequently studied the correlations between the clinical and pathologic features in these patients.

METHODS

The study included data from 122 patients with type 2 diabetes mellitus who experienced renal biopsy between February 2014 and June 2017 at King Abdulaziz Hospital, region(s) KSA. Male patients numbered 75 (61.5%) of the study population. Patients with known DN were excluded from the study as renal biopsy was not regularly performed in these patients at this institution. Patients with present acute ailment comprising infectious disease were correspondingly excluded from entry. The existence of immunologic diseases, infections and malignancy was similarly examined prior to inclusion into the study. Diabetes mellitus was diagnosed utilizing the criteria of the American Diabetes Association [18]. The clinical and demographic parameters were noted for every patient at the time of renal biopsy. These parameters comprised period of diabetes, electrocardiogram, blood pressure, echocardiogram, kidney ultrasound and funduscopic findings. Laboratory studies comprised fasting blood sugar, urinalysis, glucose tolerance test, blood urea nitrogen, albumin, glycated hemoglobin (HbA1c), urine osmotic pressure, 24-hour protein excretion, total protein, serum creatinine levels and creatinine clearance.

Nephrotic syndrome was defined as proteinuria (>3.5 g/day) accompanied by edema, hyperlipidemia, hypoproteinemia, or other metabolic disorders [19]. Nephritic syndrome was defined as pathologically diffuse inflammatory changes in the glomeruli accompanied by hematuria with red blood cell casts, mild proteinuria, and, regularly, hypertension, edema and azotemia. Renal failure was diagnosed in patients with blood urea nitrogen >20 mg/dl and serum creatinine >1.4 mg/dl. Hypertension was defined as a systolic blood pressure >140 mmHg or diastolic blood pressure >90 mmHg.

In all cases renal biopsy was performed as urinary abnormalities or renal function was varying with the clinical expression or the natural history of DN. Percutaneous renal biopsy was performed as designated by Veiga [20]. Renal tissue submitted for diagnosis was divided into three portions. One portion was fixed in buffered formalin and processed onto paraffin blocks for light microscopy examination. Sections were stained with hematoxyline and eosin, periodic acid-Schiff (PAS), silver methanamine and Masson’s trichrome. The second portion of tissue was frozen for direct immunofluorescence (IF) studies using fluorescein isothiocyanate (FITC) conjugated antibodies for immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), C3, C1q and fibrinogen (FIB). The third tissue portion was fixed in Trump’s electron microscopy (EM) fixative and processed into resin blocks. Ultrathin sections were stained with uranyl acetate and lead citrate, and examined using a transmission electron microscope.

Statistical analysis was performed using SPSS version 17.0 for Windows (IBM SPSS Statistics, Armonk, NY, USA). Data were expressed as mean ±SD. The Spearman rank correlation test was used to determine the associations between clinical parameters and histopathological findings. Values of P <0.05 were considered statistically significant. The study was done according to the ethical board of King Abdulaziz university.

RESULTS

Data were retrospectively analyzed from 122 patients with T2DM. Male patients numbered 75 (61.5%) of the study population. There were 10 cases (8.2%) with a pathologic diagnosis of DN, 102 cases (83.6%) with NDRD and 10 cases (8.2%) had DN complicating NDRD. The proportion of males was 64% in DN, 59% in DNRD and 89% in DN complicating non-diabetic renal disease, respectively. The clinical features and laboratory data are summarized in Table 1. The population included 9 men and one woman between 30 and 62 years of age, with only one patient older than 60 years. All patients had T2DM; the period of diabetes at the time of renal biopsy ranged from 2 to 15 years. Diabetic retinopathy was present in 9 patients and the majority of patients had hematuria (8 cases, 88.8%). Eight patients had hypertension, two patients had nephrotic syndrome, three patients had nephritic syndrome and five patients had renal dysfunction.
Table 1: The clinical data of diabetic nephropathy (DN) with non-diabetic renal disease (NDRD) in patients with type 2 diabetes mellitus (T2DM)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (years)</th>
<th>Duration of T2DM (years)</th>
<th>Diabetic retinopathy</th>
<th>Fasting blood sugar (mmol/l)</th>
<th>HbA1c (%)</th>
<th>Clinical manifestations</th>
<th>Hematuria</th>
<th>Urinary protein (g/day)</th>
<th>BUN (mg/dl)</th>
<th>Serum creatinine (mg/dl)</th>
<th>History of hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39/M</td>
<td>11</td>
<td>+</td>
<td>7.8</td>
<td>7.0</td>
<td>CRF</td>
<td>2+</td>
<td>3.8</td>
<td>23.1</td>
<td>1.5</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>30/M</td>
<td>5</td>
<td>+</td>
<td>9.0</td>
<td>7.8</td>
<td>NG</td>
<td>+</td>
<td>1.4</td>
<td>13.4</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>57/M</td>
<td>15</td>
<td>+</td>
<td>7.9</td>
<td>6.4</td>
<td>NG</td>
<td>2+</td>
<td>5.5</td>
<td>17.8</td>
<td>1.2</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>47/F</td>
<td>14</td>
<td>+</td>
<td>8.7</td>
<td>4.8</td>
<td>CRF</td>
<td>2+</td>
<td>4.9</td>
<td>21.6</td>
<td>1.4</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>45/M</td>
<td>8</td>
<td>+</td>
<td>10.5</td>
<td>8.6</td>
<td>NS</td>
<td>2+</td>
<td>3.0</td>
<td>18.9</td>
<td>1.0</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>47/M</td>
<td>6</td>
<td>+</td>
<td>5.2</td>
<td>6</td>
<td>NS</td>
<td>+</td>
<td>7.1</td>
<td>17.2</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>62/M</td>
<td>9</td>
<td>+</td>
<td>4.4</td>
<td>7.5</td>
<td>ARF</td>
<td>+</td>
<td>7.0</td>
<td>21.5</td>
<td>3.4</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>56/M</td>
<td>3</td>
<td>+</td>
<td>5.1</td>
<td>5.1</td>
<td>ARF</td>
<td>-</td>
<td>1.8</td>
<td>40.2</td>
<td>2.9</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>46/M</td>
<td>15</td>
<td>+</td>
<td>19.1</td>
<td>11.4</td>
<td>CRF</td>
<td>2+</td>
<td>3.3</td>
<td>22.2</td>
<td>1.4</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>51/M</td>
<td>5</td>
<td>-</td>
<td>5.2</td>
<td>5.7</td>
<td>NG</td>
<td>3+</td>
<td>6.7</td>
<td>42.5</td>
<td>1.3</td>
<td>+</td>
</tr>
</tbody>
</table>

Patients with a longer history of diabetes had higher urinary protein levels than those with a shorter duration of diabetes (r = 0.69, P <0.05). Nonetheless, there was a poor correlation between disease period and fasting blood sugar (r = 0.126, P >0.05) and HbA1c (r = 0.256, P >0.05).

Renal pathology findings are summarized in Table 2. All patients had diabetic renal lesions complicated with NDRD. The most common NDRD finding was IgA nephropathy, which was present in 5 patients (50%). Two patients had tubulointerstitial lesions, two patients had membrano-proliferative glomerulonephritis (MPGN) and one patients had membranous nephropathy (MN).

Table 2: The histology of diabetic nephropathy (DN) with non-diabetic renal disease (NDRD)

<table>
<thead>
<tr>
<th>Case</th>
<th>IgA</th>
<th>IgM</th>
<th>IgG</th>
<th>C3</th>
<th>C1q</th>
<th>FIB</th>
<th>Diabetic renal lesion</th>
<th>NDRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>+</td>
<td>±</td>
<td>-</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>IgA nephropathy</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2+</td>
<td>-</td>
<td>3+</td>
<td>+</td>
<td>-</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>Tubulointerstitial lesion</td>
</tr>
<tr>
<td>3</td>
<td>2+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>-</td>
<td>2+</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>IgA nephropathy</td>
</tr>
<tr>
<td>4</td>
<td>2+</td>
<td>±</td>
<td>+</td>
<td>3+</td>
<td>-</td>
<td>2+</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>IgA nephropathy</td>
</tr>
<tr>
<td>5</td>
<td>±</td>
<td>3+</td>
<td>2+</td>
<td>3+</td>
<td>2+</td>
<td>-</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>Membranous nephropathy</td>
</tr>
<tr>
<td>6</td>
<td>2+</td>
<td>2+</td>
<td>+</td>
<td>2+</td>
<td>-</td>
<td>-</td>
<td>Diffuse glomerulosclerosis</td>
<td>IgA nephropathy</td>
</tr>
<tr>
<td>7</td>
<td>2+</td>
<td>2+</td>
<td>+</td>
<td>3+</td>
<td>±</td>
<td>-</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>Membrano-proliferative glomerulonephritis</td>
</tr>
<tr>
<td>8</td>
<td>3+</td>
<td>+</td>
<td>2+</td>
<td>2+</td>
<td>-</td>
<td>2+</td>
<td>Diffuse glomerulosclerosis</td>
<td>IgA nephropathy</td>
</tr>
<tr>
<td>9</td>
<td>±</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Diffuse glomerulosclerosis</td>
<td>Membrano-proliferative glomerulonephritis</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>-</td>
<td>2+</td>
<td>Diffuse and nodular glomerulosclerosis</td>
<td>Tubulointerstitial lesion</td>
</tr>
</tbody>
</table>
DISCUSSION

The incidence of non-diabetic renal disease in diabetic patients is well acknowledged. A variety of renal lesions may arise in diabetic patients, for instance, IgA nephropathy, membranous nephropathy, mesangial proliferative glomerulonephritis, hypertensive renal disease and focal segmental glomerular sclerosis. In some diabetic patients, diabetic nephropathy is complicated by co-existing NDRD. We summarize the relevant studies [4,8,9,10,11,17,21-23], which showed that glomerular disease (58.2%) resides the most common renal complication in diabetic patients with co-existing DN and NDRD. The review presented that the three most common forms of glomerular disease were IgA nephropathy (14.1%), mesangial proliferative glomerulonephritis (10%) and post-infectious glomerulonephritis (10%). Tubulointerstitial lesions (25.5%) and vascular lesions (10%) similarly existed in such patients. In the current study, we found a high frequency of DN complicating NDRD (8.2%). These patients all had pathologic hallmarks of diabetic nephropathy, containing increased thickness of the glomerular basement membrane (GBM) and mesangial expansion. Consistent with the new classes of glomerular lesions in diabetic nephropathy, the degree from light to severe are presented as follows: I. Mild or nonspecific light microscopy changes and electron microscopy-proven glomerular basement membrane thickening. IIa. Mild mesangial expansion. IIb. Severe mesangial expansion. III. Nodular sclerosis (Kimmelstiel-Wilson lesion). IV. Advanced diabetic glomerulosclerosis [24,25]. In our study, most patients’ glomerular lesions in diabetic nephropathy were IIb or III.

The most common NDRD in our patients was IgA nephropathy, which accounted for 50% of all cases, followed by tubulointerstitial lesion (20%) and MPGN (20%). The high pervasiveness of IgA nephropathy was in accordance with findings from the aforementioned literature review, which presented pervasiveness rates ranging from 7% to 45% [8,10,21,22]. The disease spectrum of DN complicating NDRD in KSA might be thought to be different from that in other parts of the world. There was a high pervasiveness of diabetic retinopathy among our 10 cases of co-existing DN and NDRD. The mean period of diabetes was more than 8 years, and there was a direct relationship between period of diabetes and the severity of proteinuria. The poor correlation between disease period, fasting blood sugar and HbA1c does not essentially designate that DN is the only factor affecting disease progression, since the poor correlation coefficients may have been the consequence of the diversity of other types of NDRD. It is possible, nonetheless, that is in the small populace. The other unexpected result of the current study was the high incidence of hypertension (8 cases, 80%), especially as some workers report absence of hypertension in diabetes mellitus as one of the differential diagnostic features of NDRD [21]. These results designate that blood pressure control is of primary significance in the avoidance of progressive renal disease.

Our results specify that there are different clinical and pathologic features in diabetic patients with diabetic nephropathy complicating non-diabetic renal disease. These patients have some of the clinical and pathologic features of diabetic nephropathy, which comprise a high pervasiveness of diabetic retinopathy, a long duration of diabetes, increased thickness of the GBM and mesangial expansion. Other clinical findings are varying with the natural history of diabetic nephropathy, comprising the incidence of hematuria, quickly progressive renal failure and severe proteinuria. These various clinical manifestations might be the direct importance of a different pathologic diagnosis within the populace. IgA nephropathy was the most common histological diagnosis in patients undergoing renal biopsy. Nevertheless, the pathologic types of NDRD in diabetic nephropathy complicating non-diabetic renal disease in diabetic patients are no different to those in non-diabetic patients in previous studies.

CONCLUSION

In the current study, retrospective analysis of biopsy data concluded that almost 8% of Saudi patients with type 2 diabetes mellitus may have co-existing diabetic nephropathy and non-diabetic renal disease. The most common histological diagnosis in our small series was IgA nephropathy. Nonetheless, it is single-center study with a small number of patients. Larger, multicenter randomized prospective studies are, consequently, required to confirm these preliminary findings.

REFERENCES

2. Spijkerman AM, Dekker JM, Nijpels G, Adriaanse MC, Kostense PJ, Ruwaard D, Stehouwer CD, Bouter LM, Heine RJ (2003): Microvascular complications at time of diagnosis of type 2 diabetes are similar among diabetic patients detected by targeted screening and patients newly diagnosed in general...
Clinical predictors of non-diabetic nephropathy

Renal diabetic nephropathy. Should itus.


