Serum Copper and Zinc levels in Vitiligo Patients

Marwa A. Salem, Talal A. Abd El-Raheem, Nesreen M. Aboraia Department of Dermatology STDs and Andrology Faculty of Medicine, Fayoum University Corresponding author: Marwa A Salem, Mobile: 01005264296; Email: nobel79@yahoo.com

ABSTRACT

Background: vitiligo is a common, acquired, discoloration of the skin, characterized by well circumscribed, ivory or chalky white macules and patches. Researchers suggested that vitiligo may arise from autoimmune (AI), genetic, oxidative stress or neural causes. Zinc (Zn) and copper (Cu) are trace elements that are required in minutely small doses. The unique process of keratinization and melanin formation is enzyme-dependent and therefore could be influenced by trace elements deficiencies or excesses as trace elements are involved in enzymatic activities and immunologic reactions. **Aim of work:** this study aimed to detect the levels and roles of serum Zn and Cu in the pathogenesis of vitiligo. **Patients and methods**: our study included 50 vitiligo patients and 50 apparently healthy controls. Age of study groups ranged from 15 to 60 years and both sexes. Serum Zn and Cu levels were measured in each study group. **Results:** serum Zn levels were statistically significant lower in both the studied groups, but in vitiligo group they were much lower than the control group. **Conclusion:** there is a relationship between vitiligo and serum Zn. Further studies are needed to obtain better knowledge about effect of the trace elements in vitiligo patients.

Keywords: vitiligo, serum Zn, serum Cu.

INTRODUCTION

Vitiligo vulgaris is defined as an idiopathic, acquired type of leukoderma manifested by depigmentation of the epidermis resulting from destruction of melanocytes ⁽¹⁾. Researchers suggested that vitiligo may arise from autoimmune (AI), genetic, oxidative stress (OS) or neural causes ⁽²⁾. It is believed that AI etiology is the most plausible factor ⁽³⁾.

The global incidence of vitiligo is less than 1% ⁽⁴⁾, with some populations averaging between 2-3% and as high as 16% ⁽⁵⁾. Vitiligo is classified into segmental vitiligo (SV) and non-segmental vitiligo (NSV). NSV is the most common type. There is no cure for vitiligo, but several treatment options are available ⁽⁶⁾. Conventional treatments for vitiligo included photochemotherapy (psoralen plus ultra-violet A) (PUVA), phototherapy (UVB), vitamin D3 analogues, topical corticosteroids (TCS), topical immunomodulators, excimer laser and surgery. These treatment options have limited success ⁽⁷⁾. The best evidence is for applied steroids and the combination of UV light in combination with creams ⁽⁸⁾.

Zinc (Zn) and copper (Cu) are two of the trace elements that found in small amounts in the body ⁽⁹⁾. Zn and Cu are involved in many homeostatic mechanisms of the body, such as specific immunity, inflammation and oxidative stress (OS) ⁽¹⁰⁾. Decreased serum Zn and Cu levels have been reported in vitiligo by some investigators ⁽¹¹⁾, while others contradicted these findings ⁽¹¹⁾.

Aim of study: this study aimed to detect the possible changes in the metabolism of serum Zn

and Cu levels in vitiligo patients and their relation to the etiopathogenesis of vitiligo.

PATIENTS AND METHODS Patients

The present study was conducted on 50 vitiligo patients and on 50 healthy controls. Serum Zn and Cu levels was measured in both groups. Patients were selected from the attendants of outpatient clinic, Department of Dermatology, STDs and Andrology, Faculty of Medicine, Fayoum University and ETSA Govermental Hospital in the period from 1/3/2015 to 1/10/2015. Written consent was obtained from every individual. Approval was obtained from the Ethical Committee of Human Rights in Research of Fayoum University before study initiation.

Inclusion criteria

Vitiligo patients All types of vitiligo Both sexes Age from 15 to 60 years

Exclusion criteria

Presence of leukoderma secondary to other causes.

History of other obvious skin diseases. Undergoing treatment with zinc or any history of zinc intake for 6 weeks before this study. Suffering from any other systemic diseases such as: hepatic cirrhosis, viral hepatitis, neoplastic condition, myocardial infarction, steatorrhea, or renal failure, pregnancy or consumption of oral contraceptive pills and GIT troubles (like dyspepsia, diarrhea... etc.)

METHODS

Serum Zn and Cu levels was determined by using Zn and Cu colorimetric method for "*in vitro*" determination of Zn in serum, plasma or urine and Cu in serum or plasma provided from Quimica Clinica Aplicada S.A, Spain.

Collection and preparation of serum samples

A volume of 3 ml of venous blood was collected from the cases and the control group in special sterile tubes and centrifuged for 10 min at 3000 rpm. The supernatant serum was transferred to a separate sterile tube (Eppendorf tubes) and kept at -20°C in the deep freezer until analysis.

Principle of the assay for serum Zn by method of Johnsen and Eliasson ⁽¹²⁾ and serum Cu by method of Abe *et al.*⁽¹³⁾

Reference values

Serum Zn 60-110µg/dl Serum Cu Men 70-140 µg/dl Female 80-155 µg/dl

Statistical Analysis

Data were collected and coded to facilitate data manipulation and double entered into Microsoft access and data analysis was performed by using Statistical Package for Social Sciences (SPSS) software windows (2007).

Simple descriptive analysis in the form of numbers and percentages for qualitative data and arithmetic means as central tendency measurement, standard deviations (SD) as measure of dispersion for quantitative parametric data and inferential statistic test.

For quantitative parametric data

Simple one way ANOVA test was used to compare more than two independent groups of the quantitative data. Student t-test was used to compare measures of two independent groups of quantitative data. Pearson correlation coefficients were also processed. The level $p \le 0.05$ was considered the cut-off value for significance.

The study was approved by the Ethics Board of Ain Shams University.

RESULTS

The present study was conducted on 50 vitiligo patients and on 50 healthy controls. Serum Zn and Cu levels were measured in both groups. Patients were selected from the attendants of outpatient clinic, Department of Dermatology, STDs and Andrology, Faculty of Medicine, Fayoum University and Etsa Governmental Hospital.

Sex distribution of the vitiligo group showed that there were 33 females (66%), 17 males (34%), while in the control healthy group there were 36 females (72%) and 14 males (28%).

The age of both studied groups ranged from 15 to 60 years old, with a mean \pm SD of 36.74 \pm 14 in vitiligo group and with mean \pm SD of 31.28 \pm 9.49 in the control group (**Table 1**).

 Table 1: age distribution among the different studied groups

		N of individuals	Minimum	Maximum	Mean	SD
	Patients	50	15	60	36.74	14.17
Age	Controls	50	15	60	31.28	9.49

Serum Zn levels in vitiligo group age between 15 to 29 year (n=19) were ranged from 16 to 83 μ g/dl with a mean±SD (31.32±19.61). Serum Zn levels in vitiligo group age between 30 to 39 year (n=7) were ranged from 16 to 71 μ g/dl with a mean±SD (34.14±19.25). Serum Zn levels in vitiligo group age between 40 to 49 year (n=12) were ranged from 16 to 86 μ g/dl with a mean±SD (39.92±22.21). Serum Zn levels in vitiligo group age between50 to 60 year (n=12) were ranged from 21 to 86 μ g/dl with a mean±SD (45.42±24.47). There was no statistically significant difference with p-value > 0.05 between serum Zn levels and age of vitiligo group (**Table 2**).

Table 2: relation between serum Zn levels and age of the vitiligo group

	Age	N of patients	Minimum	Maximum	Mean	SD	p-value	Sig.
	15-29 y	19	16	83	31.32	19.61		
Serum	30-39 y	7	16	71	34.14	19.25	0.33	NS
Zn in	40-49 y	12	16	86	39.92	22.21		
µg/dl	50-60 y	12	21	86	45.42	24.47		

Serum Cu levels in vitiligo group age between 15 to 29 year ranged from 89 to 310 μ g/dl with mean \pm SD (156.53 \pm 65.67). Serum Cu levels in vitiligo group age between 30 to 39 year ranged from 82 to 210

Marwa Salem et al.

 μ g/dl with mean±SD (119±41.60). Serum Cu levels in vitiligo group age between 40 to 49 year ranged from 55 to 190 μ g/dl with a mean±SD (117.33±42.96). Serum Cu levels in vitiligo group age between 50 to 60 year ranged from 43 to 310 μ g/dl with a mean±SD (155.50±70.18). There was no statistically significant difference with p-value > 0.05 between serum Cu levels and age of vitiligo group (**Table 3**).

	Age	Minimum	Maximum	Mean	SD	p-value	Sig.
	15-29 y	89	310	156.53	65.67		
Serum Cu	30-39 y	82	210	119	41.60	0.19	NS
in µg/dl	40-49 y	55	190	117.33	42.96		
	50-60 y	43	310	155.50	70.18		

Table 3: relation between serum Cu levels and age of the vitiligo group

VASI in vitiligo group age between 15 to 29 year ranged from 0.02 to 12.33 μ g/dl with mean±SD (1.78±3.12). VASI in vitiligo group age between 30 to 39 year ranged from 0.001 to 19.75 μ g/dl with a mean±SD (9.25±8.79). VASI in vitiligo group age between 40 to 49 year ranged from 0.001 to 58 μ g/dl with mean±SD (1.29±19.94). VASI in vitiligo group age between 50 to 60 year ranged from 0.10 to 68.72 μ g/dl with a mean±SD (1.67±22.59). There was a statistically significant difference with p-value = 0.05 between VASI and age of vitiligo group (**Table 4**).

Table 4: relation between VASI and age of the vitiligo group

	Age	Minimum	Maximum	Mean	SD	p-value	Sig.
	15-29 y	0.02	12.33	1.78	3.12		
VASI	30-39 y	0.001	19.75	9.25	8.79	0.05	S
VASI	40-49 y	0.01	58	1.29	19.94		
	50-60 y	0.10	68.72	1.67	22.59		

Serum Zn levels in vitiligo group ranged from 16 to 86 μ g/dl with mean \pm SD (37.16 \pm 21.56) ,while in the control group they ranged from 17 to 127 μ g/dl with mean \pm SD (50.49 \pm 23.02). There was a statistically significant difference with p-value < 0.05 between serum Zn in vitiligo group and controls group (**Table 5**).

Table 5: relations between serum Zn levels in the different studied groups

		Minimum	Maximum	Mean	SD	p-value	Sig.
Serum Zn in	Patients	16	86	37.16	21.56	0.003	HS
µg/dl	Controls	17	127	50.49	23.02		

Serum Cu levels in vitiligo group ranged from 43 to 310 μ g/dl with a mean±SD of (141.62±60.56) and in the control group they ranged from 51 to 239 μ g/dl with a mean±SD of (128.38±43.03). There was no statistically significant difference with p-value > 0.05 between serum Cu levels and different study group (**Table 6**).

Table 6: relations between serum Cu levels in the different studied groups

		Minimum	Maximum	Mean	SD	P-value	Sig.
Serum Cu in	Patients	43	310	141.62	60.56	0.21	NS
µg/dl	Controls	51	239	128.38	43.03		

Serum Zn levels in vitiligo males patients ranged from 22 to 86 μ g/dl with a mean \pm SD of (55.12 \pm 23.44) and in females ranged from 16 to 71 μ g/dl with a mean \pm SD of (27.91 \pm 13.33) There was a statistically significant difference with p-value > 0.05 between serum Zn levels and sex distribution with higher levels in vitiligo males patients (**Table 7**).

 Table 7: relations between serum Zn levels and sex distribution in the vitiligo group

		Minimum	Maximum	Mean	SD	P-value	Sig.
Samm Zn in ug/dl	Male	22	86	55.12	23.44	0.0001	HS
Serum Zir in µg/ur	Female	16	71	27.91	13.33		

Serum Zn levels in the control males group ranged from 29 to 110 μ g/dl with a mean \pm SD of (60.29 \pm 21.02) and in females ranged from 17 to 127 μ g/dl with a mean \pm SD of (47.31 \pm 23). There was no

statistically significant difference with p-value > 0.05 between serum Zn levels and sex distribution with higher levels in control males group (**Table 8**).

		Minimum	Maximum	Mean	SD	P-value	Sig.			
Comme Ze in world	Male	29	110	60.29	21.02	0.07	NS			
Serum Zn m µg/m	Female	17	127	47.31	23					

Table 8: relation between serum	Zn levels and sex	distribution in the control g	roup

Serum Cu levels in vitiligo males patients ranged from 89 to 310 μ g/dl with a mean ±SD of (143.47±59.32) and in vitiligo females patients ranged from 43 to 310 μ g/dl with a mean ±SD of (140.67±62.07). There was no statistically significant difference with p-value > 0.05 between serum Cu levels and sex distribution in vitiligo group (**Table 9**).

Table 9: relations b	etween serum Cu	u levels and sex	distribution in	the vitiligo group

		Minimum	Maximum	Mean	SD	P-value	Sig.
Serum Cu in	Male	89	310	143.47	59.32	0.87	NS
µg/dl	Female	43	310	140.67	62.07		

Serum Cu levels in control males group ranged from 78 to 186 μ g/dl with a mean ±SD of (119.43±28.17) and in females ranged from 51 to 239 μ g/dl with a mean ±SD of (128.38±47.47). There was no statistically significant difference with p-value > 0.05 between serum Cu levels and sex distribution in control group (**Table 10**).

Table 10: relations between serum Cu levels and sex distribution in the control group

		Minimum	Maximum	Mean	SD	P-value	Sig.
Serum Cu in	Male	78	186	119.43	28.17	0.36	NS
µg/dl	Female	51	239	131.86	47.47		

Among the vitiligo group 41 patients (82%) had active vitiligo (new lesions appeared within last 6 months) in which serum Zn levels ranged from 16 to 86 μ g/dl with a mean \pm SD of (37.78 \pm 21.76) and 9 patients (18%) had stable vitiligo (no new lesions appeared within last 6 months). In which serum Zn levels ranged from 16 to 86 μ g/dl with a mean \pm SD of (34.33 \pm 21.69). There was no statistically significant difference with p-value > 0.05 between serum Zn levels and vitiligo disease activity (**Table 11**).

Table 11: relation between serum Zn levels and vitiligo disease activity

		Ν	Minimum	Maximum	Mean	SD	P-value	Sig.
Sorum Zn in ug/dl	active	14	16	86	37.78	21.76	0.66	NS
Serum Zir in µg/u	stable	9	16	86	34.33	21.69		

Serum Cu levels in active vitiligo patients ranged from 43 to 310 μ g/dl with a mean ±SD of (137.27±55.52) and in stable vitiligo patients ranged from 89 to 310 μ g/dl with a mean ±SD of (161.44±80.70). There was no statistically significant difference with p-value > 0.05 between serum Cu levels and vitiligo disease activity (**Table 12**).

Table 12: relation between serum Cu levels and the disease activity in the vitiligo group

		Minimum	Maximum	Mean	SD	P-value	Sig.
Serum Cu in	active	43	310	137.27	55.52	0.28	NS
µg/dl	stable	89	310	161.44	80.70		

Among the vitiligo group the vitiligo disease duration was less than 1 year in 6 patients in which serum Zn levels ranged from 18 to 58 µg/dl with mean±SD of (30.67 ± 15.46). The disease duration between 1 to 10 years in 30 patients in which serum Zn levels ranged from 16 to 86 µg/dl with a mean ±SD of (39.83 ± 24.64). The disease duration between 10 to 20 years in 9 patients in which serum Zn levels ranged from 21 to 83 µg/dl with a mean ±SD of (32.56 ± 19.30). The disease duration more than 20 years in 5 patients in which serum Zn levels ranged from 25 to 48 µg/dl with a mean ±SD of (37.20 ± 9.12). There was no statistically significant difference with p-value > 0,05 between serum Zn levels and vitiligo disease duration (**Table 13**).

			N of patients	Minimum	Maximum	Mean	SD	P- value	Sig.
		<mark><</mark> 1 y	6	18	58	30.67	15.46		
Serum Zn in	1	-10 y	30	16	86	39.83	24.64	0.71	NS
µg/dl	1	0-20 y	9	21	83	32.56	19.30		
	<mark>//</mark>	<mark>></mark> 20 y	5	25	48	37.20	9.12		

Table 13: Relation between serum Zn levels and the vitiligo disease duration

Serum Cu levels in vitiligo patients whom period of disease was less than 1 year ranged from 133 to 310 µg/dl with a mean ±SD of (187.67±69.63). The disease duration between 1 to 10 years serum Cu levels ranged from 55 to 310 µg/dl with a mean ±SD of (143.30±57.82). The disease duration between 10 to 20 years serum Cu levels ranged from 43 to 281 µg/dl with a mean ±SD of (124.56±67.24). The disease duration more than 20 years serum Cu levels ranged from 90 to 131 µg/dl with a mean ±SD of (107±15.19). There was no statistically significant difference with p-value > 0,05 between serum Cu levels and vitiligo disease duration (**Table 14**).

 Table 14: relation between serum Cu levels and vitiligo disease duration

		Minimum	Maximum	Mean	SD	P-value	Sig.
	<1 y	133	310	187.67	69.63		
Serum Cu in	1-10 y	55	310	143.30	57.82	0.11	NS
µg/dl	10-20 y	43	281	124.56	67.24		
	>20 y	90	131	107	15.19		

VASI in vitiligo patients whom duration of disease was less than 1 year ranged from 0.027 to 7.40 with a mean \pm SD of (1.57 \pm 3.26). The disease duration between 1 to 10 years VASI ranged from 0.0012 to 49.87 with a mean \pm SD of (5.11 \pm 10.92). The disease duration between 10 to 20 years VASI ranged from 0.0100 to 68.72 with a mean \pm SD of (1.83 \pm 23.47). The disease duration more than 20 years VASI ranged from 9.300 to 58 with a mean \pm SD of (2.24 \pm 20.14). There was a statistically significant difference with p-value < 0.05 between VASI and the vitiligo disease duration with high scale with disease duration between 1 to 10 years (**Table 15**).

Table 15: relation between VASI and the vitiligo disease duration

		Minimum	Maximum	Mean	SD	p-value	Sig.
	1 year	0.027	7.40	1.57	3.26		
	1-10 years	0.0012	49.87	5.11	10.92	0.01	S
VASI	10-20 years	0.0100	68.72	1.83	23.47		
	>20 years	9.300	58	2.24	20.14		

VASI in vitiligo group ranged between >1 to 25 in 44 patients with serum Zn levels ranged from 16 to 86 μ g/dl with a mean \pm SD of (35.48 \pm 20.22). VASI in vitiligo group ranged between < 25 to< 60 in 6 patients with serum Zn levels ranged from22 to 81 μ g/dl with a mean \pm SD of (49.50 \pm 28.82). There was no statistically significant difference with p-value > 0,05 between VASI and serum Zn levels in vitiligo group (**Table 16**).

Table 16: relation between	VASI and serum	Zn levels in the	vitiligo group
----------------------------	----------------	------------------	----------------

	VASI	N of patients	Minimum	Maximum	Mean	SD	p- value	Sig.
Serum Zn in	>1-25	44	16	86	35.48	20.22	0.13	NS
µg/dl	<25-<60	6	22	81	49.50	28.82		

VASI in vitiligo group ranged between >1 to 25 with serum Cu levels ranged from 55 to 310 μ g/dl with a mean \pm SD of (144.23 \pm 61.84). VASI in vitiligo group ranged between < 25 to< 60 with serum Cu levels ranged from 43 to 190 μ g/dl with a mean \pm SD of (122.50 \pm 50.50). There was no statistically significant difference with p-value > 0.05 between VASI and serum Cu levels in vitiligo group (**Table 17**). **Table 17: relation between VASI and serum Cu levels in the vitiligo group**

	VASI	Minimum	Maximum	Mean	SD	p-value	Sig.

Sorum Cu in ug/dl	>1-25	55	310	144.23	61.84	0.41	NS
Serum Cu m µg/u	<25-<60	43	190	122.50	50.50		

This study showed that there was a statistically significant positive correlation with p-value ≤ 0.05 between VASI and age and between VASI and the vitiligo disease duration (**Table 18**).

Table 18: correlation between	VASI, age and disease dura	tion among the vitiligo	study group
			State Broad

	VASI				
	r	P-value	Sig.		
Age	0.34	0.016	S		
Period of disease	0.44	0.002	HS		

Also, this study showed a statistically significant negative correlation between serum Cu and the vitiligo disease duration with p-value > 0.05 (**Table 19**).

	Serum Cu in µg/dl		
	r	p-value	Sig.
Period of disease	-0.27	0.06	NS

DISCUSSION

Vitiligo is an acquired skin disease characterized by white areas of the skin. The disease may affect individuals of both sexes and is mostly characterized by loss of melanocytes (14). The etiology of vitiligo and the causes of melanocyte death are not clear. At least three pathogenic mechanisms immunological, neural and biochemical ⁽¹⁵⁾ have been suggested, but none can completely explain the disease. Some findings showed that OS may be an important phenomenon in the pathophysiology of vitiligo ⁽¹⁶⁾. Zn is one of the important trace elements related to health and disease ⁽¹⁷⁾. Zn in combination with other micronutrients such as Cu, cobalt, nickel, iron, manganese and Ca^{++} (18) plays an important role in the process of melanogenesis ⁽¹⁹⁾. The present study was designed to assess serum Zn and Cu levels in vitiligo patients and correlate it with age, sex, disease duration, activity, disease severity expressed clinically via VASI and compare it with their levels in healthy control individuals to understand their roles in pathogenesis of vitiligo.

Our study included 50 patients with vitiligo of both sexes: 33 females (60%) and 17 males (34%). Fifty volunteers were included as a control group. Age in vitiligo group ranged between 15 to 60 years with a mean \pm SD of (36.74 \pm 14) years and in control group ranged from 15 to 60 years with a mean \pm SD of (31.28 \pm 9.49) years.

Our data revealed that serum Zn levels was significantly low in vitiligo patients ranged from 16 to 86 μ g/dl with a mean \pm SD of (37.16 \pm 21.56) compared to the controls, ranged from 17 to 127 μ g/dl with a mean \pm SD (50.49 \pm 23.02), these results are consistent with

results of Wang *et al.* ⁽²⁰⁾, Yao ⁽²¹⁾, Wang ⁽²²⁾, Wu *et al.* ⁽²³⁾, Wang *et al.* ⁽²⁴⁾, Kang *et al.* ⁽²⁵⁾, Zhou *et al.* ⁽²⁶⁾, Wang and Chen ⁽²⁷⁾, Wang and Xu ⁽²⁸⁾, Shi *et al.* ⁽²⁹⁾, Tu *et al.* ⁽³⁰⁾ and Li *et al.* ⁽³¹⁾ whose researches on chinese vitilgo patients showed that serum Zn levels were also significantly lower in vitiligo patients than in healthy controls ⁽³²⁾.

Also, Shameer *et al.* ⁽¹⁹⁾, Haider ⁽¹¹⁾, **Bruske and Salfeld** ⁽³³⁾ indicated that serum Zn decreased in vitiligo patients.

This is also in agreement with results of **Medhavi** *et al.* ⁽³⁴⁾, **Wasan and Al-Rubayee** ⁽³⁵⁾, **Molokhia and Portnoy** ⁽³⁶⁾ who observed a significant decrease in serum Zn level in vitiligo patients compared to the control group.

Arora *et al.* ⁽¹⁷⁾ showed that serum Zn was lower in vitiligo patients than the control group, but this difference was not statistically important. Interestingly, **Inamadar and Palit** ⁽¹⁸⁾ reported appearance of vitiligo-like depigmented cutaneous lesions in two siblings with acrodermatitis enteropathica who developed decreased serum Zn level due to discontinuation of Zn supplements.

On the contrary, **Haider** *et al.* ⁽¹¹⁾ observed that serum Zn level was found to be increased in the patients than the controls but it was not statistically significant.

Basha *et al.* ⁽³⁷⁾ showed that the mean Zn level in both groups was found to be within the normal reference range, but in vitiligo patients the mean **Zn** levels was observed to be statistically significantly higher than that of controls.

Also, **Helmy** *et al.* ⁽³⁸⁾ showed that serum **Zn** levels were significantly higher in the active vitiligo patients compared to the controls.

The present study also measured serum **Cu** and found insignificantly higher levels in vitilgo

group and they ranged from 43 to 310 μ g/dl with mean \pm SD of (141.62 \pm 60.56) than the controls, (ranged from 51 to 239 μ g/dl) with a mean \pm SD of (128.38 \pm 43.03). In the presence of Zn deficiency, absorption of Cu is enhanced ⁽³⁹⁾. As a result, reduced serum Zn levels was accompanied by elevated serum Cu levels ⁽⁴⁰⁾.

Also, **Helmy** *et al.* ⁽³⁸⁾ showed that Cu levels were significantly higher in active vitiligo patients compared to the controls.

Melanins are colloidal pigments and have a high affinity for metal ions; therefore, Cu and Zn are found in high levels in pigmented tissues involved in melanin synthesis. As melanocytes degenerate in vitiligo patients, less Cu and Zn are utilized for the melanin synthesis, which consequently raise levels of Cu and Zn in serum in vitiligo patients ⁽⁴¹⁾.

On the contrary, Wang ⁽²²⁾, Wasan and Al-Rubayee ⁽³⁵⁾, Wu *et al.* ⁽²³⁾, Kang *et al.* ⁽²⁵⁾, Wang *et al.* ⁽²⁷⁾, Shi *et al.* ⁽²⁹⁾ and Li *et al.* ⁽³¹⁾ reported no statistically significant Cu level change between the vitiligo patients and the control group. No significant alteration in serum Zn and Cu levels in vitiligo patients possibly supports other theories such as AI theory.

Also, Madhavi *et al.* ⁽³⁴⁾, Yao ⁽²¹⁾, Wang *et al.* ⁽²⁴⁾, Gu *et al.* ⁽⁴²⁾, Haider ⁽¹¹⁾, Shameer *et al.* ⁽¹⁹⁾, Li and Zhu ⁽⁴³⁾, Zhou *et al.* ⁽²⁶⁾, Wang and Xu ⁽²⁸⁾, Tu *et al.* ⁽³⁰⁾ and Bruske and Salfeld ⁽³³⁾ presented significant decrease of Cu level in vitiligo patients.

Cu and Zn are antioxidants involved in destruction of free radicals and potential antiapoptotic factors for protecting cell proteins from oxidation. Furthermore, Cu and Zn may play roles in stimulating cell-mediated immunity responses, synthesizing and releasing of melanocyte stimulating hormone, which are also important in melanogenesis ⁽¹⁸⁾. So, decreased serum Zn and Cu levels can cause vitiligo.

Our study showed more vitiligo females patients, which is similar to other studies such as **Akay** *et al.* ⁽⁴⁴⁾, **Karelson** *et al.* ⁽⁴⁵⁾ **and Akrem** *et al.* ⁽⁴⁶⁾ which explained by more awareness of the women to cosmetic disfigurement and therefore more likely to seek treatment. However, **Liu** ⁽⁴⁷⁾, **Majumder** ⁽⁴⁸⁾ and **Mosher** *et al.* ⁽⁴⁹⁾ showed both sexes were equally affected.

Basha *et al.* ⁽³⁷⁾ and Arora *et al.* ⁽¹⁷⁾ reported that there was no statistically significant difference of the serum Zn level and sex distribution. Conversely, our study showed that serum Zn levels was significantly higher in vitiligo males patients than vitiligo females. Also, there was a tendency to be a statistically significant higher in male control group than female control

group. Our study showed that there was a statistically significant difference between VASI and age of vitiligo group and between VASI and disease duration. Also, statistically significant was a positive correlation between VASI and age. Also, this study found a tendency to be statistically significant negative correlation between serum Cu levels and vitiligo disease duration.

Our study found that serum Cu was insignificantly higher in vitilgo group compared to the control group. There was no statistically significant difference between serum Zn and Cu levels and age of vitiligo group. There was no statistically significant difference between serum Zn and Cu levels and vitiligo disease activity. There was no statistically significant difference between serum Cu levels and sex distribution in the vitiligo group and in the control group. There was no statistically significant difference between serum Zn and Cu levels and the vitiligo disease duration. There was no statistically significant difference between VASI and serum Zn and Cu levels in vitiligo group.

CONCLUSION

In our study serum Zn levels were lower in the different studied groups, but in the vitiligo group it was much lower and insignificantly higher serum Cu levels in the vitilgo group compared to the control group. So serum Zn and Cu may have an effect on the vitiligo disease as Zn in combination with other micronutrients such as Cu, cobalt, nickel, iron, manganese and Ca⁺⁺ plays an important role in the process of melanogensis.

RECOMMENDATIONS

- 1- Further investigation are needed on larger number of patients and divide them into further classifications of the disease (acrofacial,vitiligo vulgaris... etc) to obtain better knowledge of the effect of these trace elements.
- 2- Treatment with Zn supplements can be tried in these patients to see the outcome. A survey in Fayoum City populations is needed to diagnose Zn deficiency.
- 3- Measurement of the serum Cu level may be a helpful test in the diagnosis of Zn deficiency.
- 4- Further studies are needed to recognize the role of Zn and Cu and other trace elements in vitiligo etiopathogenesis.
- 5- Further studies are needed to recognize the role of Zn and Cu and other trace elements in other skin diseases.

REFERENCES

1) Nordlund JJ(2000): The loss of melanocytes from the epidermis: the mechanism for depigmentation in

Vitiligo vulgaris. In: Monograph on the Basic and Clinical Science. Hann SK, Nordlund JJ, eds. Blackwell Science, Oxford, London. pp: 7–12.

- 2) Halder RM and Chappell JL(2009): Vitiligo update. Seminars in Cutaneous Med. and Surg., 28 (2): 86–92.
- 3) NunesI DH and Hademann LM(2011): Vitiligo epidemiological profile and the association with thyroid disease. An. Bras.Dermatol. Rio de Janeiro, 86:241-248.
- 4) Nath SK, Majumder PP and Nordlund JJ(1994): Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am. J. Hum. Genet., 55(5):981–990.
- 5) Krüger C and Schallreuter KU(2012): A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int. J. Dermatol., 51(10):1206–1212.
- 6) Ezzedine K, Eleftheriadou V, Whitton M and van Geel N(2015): Vitiligo. Lancet, 386:74-84.
- 7) Forschner T, Buchholtz S and Stockfleth E(2007): Current state of vitiligo therapy–evidence-based analysis of the literature. Journal der Deutschen Dermatologischen Gesellschaft, 5(6):467-475.
- 8) Whitton ME, Ashcroft DM and González U(2008): Therapeutic interventions for vitiligo. J. Am. Acad. Dermatol., 59(4):713–717.
- **9)** Griffiths CE and barker JN (2007): Pathogenesis and clinical feature of psoriasis. Lancet, 370:263-271.
- 10) Karsli Ceppioğlu S, Yurdun T and Canbakan M (2011): Assessment of matrix Gla protein, Klotho gene polymorphisms and oxidative stress in chronic kidney disease. Ren. Fail., 33(9),866-874.
- 11) Haider N, Islam MS, Maruf AA, Shohag H, Ali R, Rahman M and Hasnat A (2010): Oxidative stress and antioxidant status in vitiligo patients. Dhaka Univ. J. Pharm. Sci., 9: 103–108.
- **12)** Johnsen O, Eliasson R (1987): Evaluation of a commercially available kit for the colorimetric determination of zinc in human seminal plasma. Int. J. Androl., 10:435-440.
- 13) Abe A, Yamashita S and Noma A(1989): Sensitive, direct colorimetric assay for copper in serum. Clin. Chem.,4:552-554.
- 14) Handa S and Kaur I (1999): Vitiligo: Clinical findings in 1436 patients. J. Dermatol., 26: 653-657.
- 15) Dell'anna ML, Urbanelli S and Mastrofrancesco A, Camera E, Iacovelli P, Leone G, Manini P, D'Ischia M and Picardo M(2003): Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients. Pigment Cell Res., 16: 553–559.
- 16) Hazneci E, Karabulut AB, Ozturk C, Batcioglu K, Dogan G, Karaca S and Eprefoðlu M (2005): A comparative study of superoxide dismutase, catalase, and glutathione peroxidase activities and nitrate levels in vitiligo patients. Int. J. Dermatol., 44:636–640.
- 17) Arora PN, Dhillon KS, Rajan SR, Sayal SK and Das AL (2002): Serum zinc level in cutaneous disorders. Med. J. Armed Forces, 58:304–310.
- **18)** Inamadar AC and Palit A (2007): Acrodermatitis entropathica with depigmented skin lesions simulating vitiligo. Pediatr. Dermatol., 24:668-669.

- **19) Shameer P, Prashad P and Kaviarasan P(2005):** Serum zinc level in *vitiligo*: a case control study. Indian J. Dermatol. Venereol. Leprol., 71:206-207.
- **20) Wang YD, Liu XH and Lv XH(2012):** Analysis of serum trace elements of vitiligo patients in DaQing district. J. Qiqihar Univ. Med., 33:39–40.
- 21) Yao A P(2011): The clinical analysis of trace elements in *vitiligo* patients. China. Higher Med. Educ., 7:145– 146.
- **22) Wang XM (2011):** A correlative study on SOD and serum Zinc Copper Iron in patients with vitiligo. World Elemental Med., 18:31–32.
- 23) Wu Y, He N, Li JS and Ling L (2010): The zinc and copper levels in serum of 70 vitiligo patients from Guangxi Province. Chin J. Derm. Venereol., 24:722– 727.
- 24) Wang SH, Zhang J and Xin M (2007): The clinical study of treatment with Yuliaoling particles in *vitiligo* patients. J. N. Chin. Med., 39:54–56.
- **25)** Kang AJ, Su Bs and Xu HQ(2002): Research on the melanocytes apoptosis in *vitiligo* caused by oxygen free radicals and microelement. J. Chin Clin. Med., 3:4–7.
- 26) Zhou YX, Yang L and Ou YH (1996): The influences of Zitongxiaobai prescription on the serum levels of zinc and copper in *vitiligo* patients. Hunan Guiding. Journal of TCMP., 2:32–33.
- 27) Wang XH and Chen XD(1996): The zinc and copper levels in serum of 48 vitiligo patients. J. Nantong Med. Coll., 16:277.
- **28) Wang F and Xu HQ(1993):** Changes of some enzymes and trace elements in serum and skin lesions in vitiligo patients. Chin J. Derm. Venereol., 7:142–143.
- **29) Shi DR, Pu XM and Ha LS (1993):** A correlative study on serum copper and zinc in patients with vitiligo. J. Clin. Dermat., 5:241–243.
- **30) Tu CX, Lin XR and Yin F(1991):** Copper and zinc contents in serum and skin tissue liquid from patients with vitiligo. Chin. J. Derm. Venereol.,1: 20–25.
- **31)** Li YG, Zhou JG and Shao ZH(1988): Determination of the levels of copper and zinc in plasma of serum of some patients. J. Tianjin Univ. Commer., 4:24–30.
- 32) Zeng Q, Yin J, Fan F, Chen J, Zuo C, Xiang Y, Tan L, Huang J and Xiao R(2014): Decreased copper and zinc in sera of Chinese vitiligo patients: a meta-analysis. Japanese J. Dermatol., 41:245–251.
- 33) Bruske K and Salfeld K (1987): Zinc and its status in some dermatologic diseases -a statistical assessment. Z. Hautkr., 62 (1):125–131.
- **34) Madhavi D, Divyamalini T and Sarada C (2014):** Oxidative stress in the pathogenesis of vitiligo. Int. J. Pharm. Bio. Sci., 5:820-828.
- **35)** Wasan TS and Al-Rubayee W(2011): Trace elements levels in serum and hair of patients with vitiligo and alopecia areata. Karbala J. Med., 4:1117-1121.
- **36)** Molokhia MM and Portnoy B (2006): Copper and zinc in *Vitiligo*, moles and seborrhoeic warts. Br. J. Dermatol., 88 (4):347-353.
- 37) Basha MA, Azmy RM, Amin OA, Abd El-Khalik SR(2015): Study of serum zinc in *vitiligo*. Menoufia Med. J., 28:377-381

- **38) Helmy MI, Gayyar EL, Hawas S and Eissa AE(2004):** Role of oxidative stress in the pathogenesis of vitiligo. J. Pan-Arab League Dermatologist., 15:97–105.
- **39) Yanagisawa H (2002):** Clinical aspects of zinc deficiency. J. Japan Med. Asso., 127(2): 261–268.
- **40)** Tomita H(2002): Taste Disorder and Diet. Kodansha Ltd., Tokyo pp:3–140.
- **41)** Bagherani N, Yaghoobi R and Omidian M (2011): Hypothesis: zinc can be effective in treatment of vitiligo. Indian J. Dermatol., 56:480–484.
- **42) Gu CL, Zhou AH and Wang JP (2005):** Serum level of copper in *vitiligo* patients. Conference proceedings of the 9th academic meeting of laboratory medicine in the five northwestern provinces . Hospital of Ningxia Medical College. Ningxia. https://docslide.com.br → Documents
- **44) Akay BN, Bozkir M, Anadolu T and Gullu S (2010):** Epidemiology of vitiligo, associated autoimmune diseases and audiological abnormalities. Ankara study

of 80 patients in Turkey. J. Eur. Acad. Dermatol. Venereol., 24:1144-1150.

- 45) Karelson M, Kimgo K, Salum T, Kõks S and Silm H(2009): An Adult's Vitiligo in Estonia: Study of 155 patients. Open Dermatol. J., 3:68-72.
- **46)** Akrem J, Baroudi A, Aichi T, Houch F and Hamdaoui MH(2008): Profile of vitiligo in the south of Tunisia. Int. J. Dermatol., 47:670-674.
- 47) Liu JB, Li M, Yang S, Gui JP, Wang HYand Du WH(2005): Clinical profile of vitiligo in China: An analysis of 3742 patients. Clin. Exp. Dermatol., 30:327-331. [↑]
- **48) Majumder PP(2000):** Genetics and prevalence of *Vitiligo vulgaris*. In: Vitiligo. Hann SK, Nordlund JJ, eds. Blackwell Science Ltd. Oxford. Pp: 18-20.
- **49)** Mosher DB, Parrish JA and Fitzpatrick TB (1977): Monobenzylether of hydroquinone. A retrospective study of treatment of 18 vitiligo patients and a review of the literature. Br. J. Dermatol., 97:669–679.