Cytokines, Lipid Peroxide and Nitric Oxide in Egyptian Hepatocellular Carcinoma on Top of HCV and HBV Infection

Osman E.E., Mabrouk F.M., Hassan H.A., Aboelyazed S.M.,
SINT Medicine (Girls) – AL AZHAR University
Salem T.H. Biochemistry – ASSUIT University
Ahmed G.O. Clinical Pathology Dept. AL AZHAR University
Hassan A.A. Pathology – AL AZHAR University

Abstract:

Background and Aims: Many studies have shown the relative roles of hepatitis B and C viruses in hepato-carcinogenesis. The aim of this study is to define the independent and interactive roles of some cytokines namely, TNFα, IL-6, IL-1β together with NO and TEARS in the genesis of HCC following the infection with such viruses.

Patients and methods: Blood samples were taken from 58 patients with hepatocellular carcinoma and were divided into four groups: a) 28 patients with HCV, b) 10 patients with HBV, c) 11 patients with B+C, d) 9 patients without viral infection. In addition, 20 healthy subjects served as control group for each, TNFα, IL-6, and IL-1β were measured using ELISA technique, in addition to NO and TBARs using chemical methods.

Results: Patients with coinfection B-C viral infection showed the highest levels in studied parameters. Patients with HCV and HBV separately showed more or less similar results. However, patients without viral infection showed the least higher levels comparing to the control group.

Conclusion: Cytokines in addition to NO and TEARS have a definite role in hepatic carcinogenesis. Coinfection with the two viruses carries a synergistic risk factor of hepatocellular carcinoma development. Depending on the results of the studied parameters HCV did not show predominancy on HBV. Further studies are needed to clarify the exact mechanism of carcinogenesis especially in HCV patients.

Key Words: HCC, HCV, HBV, IL-1β, IL-16 TNFα, NO, TBARs

Introduction

Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumours in developing countries (Laurent Purg et al., 2001), HCC risk factors, such as infection by hepatitis B or C viruses (HBV and HCV), cirrhosis of various etiology, primary hemo chromatosis, and prolonged exposure to Afatoxin BI, are well proven (Kato, 2001). However, the carcinogenesis mechanisms are still poorly understood and seem to differ according to the risk factor involved (Arbuthnot and Kew, 2001) and (Umeda and Hino, 2002). Epidemiological and experimental evidences have established that chronic infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risk factors for hepatocellular carcinomas (HCC) in humans (Kew et al., 1997, Kondo et al., 2001). The epidemiological studies also indicate that the relative role of these two viruses in hepatocellular carcinogenesis vary considerably among different populations. Coinfection with the two viruses carries a synergistic risk of hepatocellular carcinoma formation. Cytokines are synthesized and secreted in the liver mostly by kupffer cells and play a key role in inflammatory processes and immunological responses related to liver diseases, which are initiated by hepatocytes damage (Flisiak, 1999). Peter et al. (2000) emphasized a central role for interleukin 6 (IL-6) and soluble interleukin 6 receptor (sIL-6R) in liver regeneration. They added that, a possible
Cytokines, Lipid Peroxide and Nitric Oxide in Egyptian......

therapeutic potential for the designer cytokine type IL-6 in clinical situations associated with liver regeneration. However, Liorent et al. (1996) reported high degree of cytokine gene expressions namely transforming growth factor one beta (TGRFIB), interleukin one beta (IL-1β) and Interleukins 2, 6, 8 and 10 as well as tumour necrosis factor alpha, in post hepatitis C liver cirrhosis. The authors concluded that these cytokines appear to participate in the pathogenesis of the mild to severe liver damage and liver carcinogenesis.

Cellular oxidative respiration results in the generation of a number of reactive oxygen species (ROS) including super oxide (O2-) hydroxyl radical (OH”) and other free radicals that rapidly dismutase to form H2O2. Accumulations of ROS contribute to cell injury through effects on gene and protein expression, DNA damage and lipid peroxidation. (Schlenker et al, 2000). In this regard, hepatocyte expression of inducible nitric oxide synthase (iNOS) and synthesis of nitric oxide (NO) posses protective anti oxidant functions in models reperfusion injury (Kuo et al., 2000). This effect is independent of both the oxidant species and the specific proinflammatory roles of cytokine that characterize these pathophysiological states. However, Kuo et al. (2000) reported that super oxide enhances interleukin-1β and mediate CI transcription of the hepatocyte-inducible nitric oxide synthase gene.

Moreover IL-1β followed by TNF-α and IL-6, and other cytokines were the most effective cytokines to induce Mn2+-superoxide dismutase activity in human hepatoma cells (Pontisso et al., 1998).

It is concluded from the pervious short review that IL-1β, IL-6 and TNF-α together with oxygen species mainly in the form of lipid peroxide and nitric oxide, are very dynamic effectors of the normal and the pathological behavior of the liver cells. Moreover, these effects are modulated in the complicated situation with infection by HCV or HBV. Therefore, investigating the nature of the expression of these proinflammatory effectors at protein level in addition to the oxidant/antioxidant mechanism in the blood of patients with hepatocellular carcinoma with or without viral infection could elucidate their role in protection and/or pathogenetic causation of this complicated condition.

Aim of the Study:
1. To investigate the role of three cytokines namely TNF-α, IL-1β and IL-6 together with lipid peroxide and nitric oxide in cases of hepatocellular carcinoma with or without previous viral infection among Egyptian patients.
2. To highlight the effect of bilharzial infection on hepatic carcinogenesis.
3. To find any relation between the previous parameters and the type of viral infection.
4. To report any correlation between these parameters.
5. To find a correlation between these parameters and the grading of the hepatocellular carcinoma.
6. To correlate these parameters with the liver functions and its enzymatic status.
7. To discover a new regimen for using such cytokines as follow up parameters and determining a possible role for using anticytokines in the treatment of hepatocellular carcinoma.

Material and Methods

The present study include 58 subjects divided into the following groups:

Group 1: included 28 patients (26 males and 2 females) suffering from hepatitis C virus infection with hepatocellular carcinoma. Their ages ranged from 33-70 years with mean ±SD of (52-5+10.6) out of the 28, 14 patients had a past history of Bilharziasis.

Group 2: included 10 patients (all are males) with hepatocellular carcinoma and hepatitis B virus infection. Their ages ranged from 31-68 years with mean ± SD of (52.8±9.2) Two out of the 11 patients had past history of Bilharziasis, and three had history of previous operations.

Group 3: included 11 patients (all males were diagnosed with hepatocellular carcinoma and co-infection by both virus B and C. their ages ranged from (28-71) years with mean ± SD is (47.3+11.3) Five out of
them had past history of Bilharziasis and three had history of blood transfusion.

Group 4: included 9 patients (all were males) with hepatocellular carcinoma without co-infection with viral infection, but two of them had past history of Bilharziasis. Their ages ranged from 50-78 with mean ± SD of (58.5±13.1)

The patients were recruited among the:
1. Attendants of internal medicine department Al-Zahraa University Hospital (Al-Azhar University).
2. Attendants of Tropical medicine department, El-Minia University Hospital and El-Minia Institute of Oncology.
3. Attendants of Internal medicine department, Assiut University Hospital and Assiut Institute of Oncology.
4. Attendants of Internal medicine department, Sohage University Hospital.

Smokers in addition to Patients with diabetes mellitus, heart failure, hypertension, renal failure, Cancer, and Fever were excluded from this study.

Group 5: Included 20 healthy non-smoker male subjects, their ages and socio-economic status matched with the previous groups, serving as a control group.

For all patients and healthy subjects the following parameters were done:
1. Full history and thorough clinical examination.
2. Chest X-ray.
3. Abdominal ultrasonography.
4. Routine liver function tests including, total bilirubin, total protein albumin, liver enzymes: Alanine amino transferase, (ALT), and alkaline phosphatase, in addition to prothrombin time and concentration.
5. Antigens and antibodies for hepatitis B virus (HBV) and hepatitis C virus antibodies (HCVJ by ELISA technique.).
6. HCV / RNA detection by polymerase chain reaction, (PCR).
7. Liver biopsy was carried out only on patients with HCC provided that the prothrombin time and concentrations are favourable. The grading was carried out according to Comparing the cytokines among patients with different grades of HCC was only carried out in the group of HCC on top of HCV as this group comprised the highest number of patients allowing statistical comparison of results.
8. Five-millimeter blood had been taken from each patient and control subject under complete aseptic conditions using suction tubes. Sera had been separated and deeply frozen until the time of usage to estimate the following:
 i. Tumour Necrosis factor-Alpha (TNF-α). By ELISA technique.
 ii. Interleukin-one Beta (IL-1β). By ELISA technique.
 iii. Interleukin six (IL-6). By ELISA technique.
 iv. Alpha fetoprotein (α-FP). By ELISA technique.

Results

The pathological study of liver biopsies of 28 patients suffering from hepatocellular carcinoma with HCV co-infection revealed that 15 are grade 11 and 13 are grade III.

Symptoms and signs of Egyptian HCC patients are shown in table (1). Table (2) shows risk factors of HCC patients.

Patients with HCC and both B and C viral co-infection recorded the highest serum level of TNF α compared to the other four groups (p < 0.001, while no statistical difference was recorded between HCC with B infection and HCC with C infection (the two pathological grades). On the other hand patients with HCC without viral infection recorded the least level, but still statistically higher than control p<0.001 (table 3).

IL-6 was the highest in the sera of HCC B+C patients P<0.001 compared to all studied groups. HCC-C patients showed significant increased levels compared to HCC-B patients (p<0.01) Patients with HCC non-B non-C showed the least levels, but still higher compared to the control p<0.001 (Table 3).

Serum level of IL-1β was significantly higher in patients with HCC-B+C compared to all studied groups.
Cytokines, Lipid Peroxide and Nitric Oxide in Egyptian

...p<0.001. No significant difference was recorded between patients with HCC-B and HCC-C, while patients with HCC non-B non-C recorded the least levels, but still higher than control p<0.01 (Table 3).

Serum levels of TEARS, MDA equivalent and NO showed the highest levels in patients with HCC B+C compared to all studied groups (p < 0.001) patients with HCC-B showed no significant difference compared to HCC-C patients (table 3).

On the other hand, no significant difference was recorded in HCC-C patients with Bilharziasis compared to non-Bilharzial patients in all studied parameters (table 4).

Patients with HCC associated with HCV infection showed positive correlation between TNF-α and IL-1β, IL-6, α-FP, serum bilirubin, alkaline phosphatase, NO and tumor grading and between each other, while negative correlation between prothrombin concentration and IL-6, s.bilirubin, alkaline phosphatase, total protein, NO and tumour grading.

Table (1): Symptoms and signs of all included patients (NO. 58)

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>Frequency of + ve cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO.</td>
</tr>
<tr>
<td>Fever</td>
<td>3</td>
</tr>
<tr>
<td>Malaise</td>
<td>41</td>
</tr>
<tr>
<td>Weight loss</td>
<td>13</td>
</tr>
<tr>
<td>Jaundice</td>
<td>41</td>
</tr>
<tr>
<td>Abd. Pain</td>
<td>58</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>40</td>
</tr>
<tr>
<td>Bleeding gums</td>
<td>39</td>
</tr>
<tr>
<td>Itching</td>
<td>3</td>
</tr>
<tr>
<td>Haematemesis</td>
<td>16</td>
</tr>
<tr>
<td>Melena</td>
<td>7</td>
</tr>
<tr>
<td>Foeter hepaticus</td>
<td>8</td>
</tr>
<tr>
<td>Gynacomastia</td>
<td>7</td>
</tr>
<tr>
<td>Spider navei</td>
<td>5</td>
</tr>
<tr>
<td>Flapping tremors</td>
<td>8</td>
</tr>
<tr>
<td>Palmer erythema</td>
<td>17</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>45</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>51</td>
</tr>
<tr>
<td>Ascites</td>
<td>42</td>
</tr>
<tr>
<td>Oedema L.L</td>
<td>24</td>
</tr>
<tr>
<td>Easy Fatigability</td>
<td>51</td>
</tr>
</tbody>
</table>

Table (2): Risk factors for all patients (NO. 58)

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>NO.</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>17</td>
<td>29.3</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>8</td>
<td>13.7</td>
</tr>
<tr>
<td>Surgical op.</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Tattooing</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Dental proced.</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Oral Bilh. Ttt</td>
<td>3</td>
<td>5.1</td>
</tr>
<tr>
<td>Inject Bilh. Ttt</td>
<td>17</td>
<td>29.3</td>
</tr>
<tr>
<td>Combined Bilh. ttt</td>
<td>4</td>
<td>6.8</td>
</tr>
<tr>
<td>Smoking</td>
<td>6</td>
<td>10.3</td>
</tr>
<tr>
<td>No of cases</td>
<td>58</td>
<td>100</td>
</tr>
</tbody>
</table>

Table (3): Biochemical parameters in all studied groups mean±SD.

581
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>HCC/non BC</th>
<th>HCC/B</th>
<th>HCC/C</th>
<th>HCC/CH</th>
<th>HCC/CHII</th>
<th>HCC/BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF- pg/ml</td>
<td>6.34</td>
<td>30.43</td>
<td>53.74</td>
<td>66.12</td>
<td>43.51</td>
<td>68.37</td>
<td>154.3</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>4.03</td>
<td>8.74</td>
<td>3.90</td>
<td>3.28</td>
<td>5.15</td>
<td>31.4</td>
</tr>
<tr>
<td>IL-1B- pg/ml</td>
<td>2.82</td>
<td>26.57</td>
<td>38.06</td>
<td>55.99</td>
<td>36.62</td>
<td>78.17</td>
<td>133.5</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>3.39</td>
<td>3.69</td>
<td>4.72</td>
<td>4.48</td>
<td>2.001</td>
<td>13.33</td>
</tr>
<tr>
<td>A f.p. – ng/ml</td>
<td>5.23</td>
<td>34.40</td>
<td>55.21</td>
<td>58.38</td>
<td>43.73</td>
<td>75.29</td>
<td>204.1</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>3.20</td>
<td>6.20</td>
<td>3.83</td>
<td>2.56</td>
<td>4.2</td>
<td>23.01</td>
</tr>
<tr>
<td>T.P. g/dL</td>
<td>3.35</td>
<td>453.8</td>
<td>539.4</td>
<td>582.4</td>
<td>359.9</td>
<td>797.5</td>
<td>661</td>
</tr>
<tr>
<td></td>
<td>0.43</td>
<td>39.7</td>
<td>48.48</td>
<td>49.55</td>
<td>53.04</td>
<td>30.17</td>
<td>54.50</td>
</tr>
<tr>
<td>A/b. – g/dL</td>
<td>7.57</td>
<td>6.46</td>
<td>6.91</td>
<td>6.9</td>
<td>7.1</td>
<td>6.7</td>
<td>7.03</td>
</tr>
<tr>
<td></td>
<td>0.087</td>
<td>0.21</td>
<td>0.22</td>
<td>0.16</td>
<td>0.24</td>
<td>0.19</td>
<td>0.32</td>
</tr>
<tr>
<td>Proth. %</td>
<td>94.5</td>
<td>68.78</td>
<td>64.6</td>
<td>66.7</td>
<td>74.8</td>
<td>57.5</td>
<td>56.0</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>4.89</td>
<td>4.9</td>
<td>2.9</td>
<td>4.27</td>
<td>1.88</td>
<td>2.098</td>
</tr>
<tr>
<td>T.Bil. –mg/dL</td>
<td>0.75</td>
<td>2.3</td>
<td>2.8</td>
<td>2.9</td>
<td>1.8</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>0.29</td>
<td>0.31</td>
<td>0.28</td>
<td>0.19</td>
<td>0.20</td>
<td>0.26</td>
</tr>
<tr>
<td>SCPT-IU</td>
<td>13.6</td>
<td>104.8</td>
<td>115.5</td>
<td>83.82</td>
<td>69.0</td>
<td>100.9</td>
<td>107.9</td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>14.5</td>
<td>18.09</td>
<td>9.93</td>
<td>9.93</td>
<td>17.3</td>
<td>10.44</td>
</tr>
<tr>
<td>Al.ph-IU</td>
<td>30.74</td>
<td>117.3</td>
<td>139.0</td>
<td>189.1</td>
<td>126.6</td>
<td>261.3</td>
<td>240.5</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>11.9</td>
<td>15.97</td>
<td>19.9</td>
<td>18.86</td>
<td>25.24</td>
<td>12.98</td>
</tr>
<tr>
<td>TBARS- M/L</td>
<td>1.79</td>
<td>2.72</td>
<td>3.27</td>
<td>3.08</td>
<td>2.87</td>
<td>3.29</td>
<td>4.86</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.32</td>
<td>0.27</td>
<td>0.25</td>
<td>0.29</td>
<td>0.41</td>
<td>0.27</td>
</tr>
<tr>
<td>NO-nM/ml</td>
<td>24.28</td>
<td>78.17</td>
<td>155.7</td>
<td>148.6</td>
<td>69.03</td>
<td>240.4</td>
<td>343.5</td>
</tr>
<tr>
<td></td>
<td>1.43</td>
<td>6.29</td>
<td>14.91</td>
<td>19.29</td>
<td>5.42</td>
<td>21.29</td>
<td>43.65</td>
</tr>
</tbody>
</table>

Table (4): Comparison between HCC-C associated with Bilharziasis (No.=14) and without Bilharziasis (No.=14) in all parameters studied. (M±SD).
Cytokines, Lipid Peroxide and Nitric Oxide in Egyptian……..

Fig. (1): Scatterogram for the individual data of serum TEARS in all studied groups.

Fig. (2): Scatterogram for the individual data of α-fetoprotein, in all studied groups.

Fig. (3): Scatterogram for the individual data of IL-1B in all studied groups.
Fig. (4): Scatterogram for the individual data of serum IL-6 in all studied groups.

Fig. (5): Scatterogram for the individual data of serum TNF-α in all studied groups.

Fig. (6): Scatterogram for the individual data of serum NO in all studied groups.
Discussion

Cytokines are synthesized and secreted in the liver mostly by Kupffer cells and play a key role in inflammatory processes and immunological responses related to liver diseases, which are initiated by hepatocytes damage. This type of signaling between different types of liver cells can produce opposing reactions; for instance, transforming growth factors beta (TGF-B) as well as interleukins (IL-1β), (IL4) and (IL-6) induce fibrosis. In contrast, transforming growth factor alpha (TGF-α) interleukin, one alpha (IL-1α) and interferons (IFN) are inhibitory to fibrosis. Loss of the balance between these stimulations seems to be responsible for activation of non-parenchymal cells, that result in an accumulation of extracellular matrix proteins including collagens with liver cirrhosis as a clinical effect (Flisiak, 1999).

Our results are in agreement with many authors. Loginov et al. (2001) reported high levels of TNF-α IL-4, IL-1β and IL-6 in sera of patients suffering from post hepatitis C cirrhosis. Lee et al. (1998) reported high serum levels of IL-6 in HCC patients due to viral infection. This finding could be explained by upregulation of IL-6 production, which can eventually lead to liver cirrhosis and HCC.

Kobsel and Ramadori (1997) reported that lysozyme synthesis and secretion were found to be augmented by IL-1β, TNF-α and IL-6 in human hepatoma cells. The authors concluded that these cytokines might have a role in modulation and production of protein molecules participate in the mechanism of carcinogenesis.

Liorent et al. (1996) reported high degree of cytokine gene expression namely transforming growth factor (TGF) interleukin 1 beta (IL-1β), Interleukins 2, 6, 8 and 10 as well as tumour necrosis factor-alpha (TNF-α) in post hepatitis C liver cirrhosis and cirrhotic specimens. The authors concluded that these cytokines appear to participate in the pathogenesis of the mild to severe liver damage.

Osman et al. (2000) reported that IL-1β increased significantly in chronic hepatitis C than normal controls. In addition, serum concentrations of this cytokine correlated with both indices of hepatic dysfunction and parameters of hepatic inflammation. The result of present study showed higher levels of cytokines of either of Th1 origin (TNFα) or of Th2 origin (IL-6). Also, IL-1β showed significant increase. All these increased cytokines showed highest level in Egyptian HCC patients with HCV and HBV co-infection followed by either HCV or HBV with no significant difference. HCC with no viral infection showed lowest levels of all HCC patients but still higher than normal controls.

This significant rise in all cytokines could be:
- Direct release of these cytokines from tumor cells but chronic HCV showed significant higher levels than normal (Osman et al., 2000).
- Upregulation of the genes corresponding to these cytokines.
- Host defense mechanism to guard against the disease.
- As a part of angiogenesis especially TNF-α
- As a part of antiapoptotic mechanism
- Chronic hepatitis (HBV) even HBs Ag negative, anti-HBs positive cases. This is mostly probably related to persistence of low levels of hepatic HBV DNA, which can also be isolated from tumor tissue.

The HBV encoded x protein, which is known to regulate both proliferation and apoptosis (Sheu et al., 1997). Chun – Chieh Chen et al. (2005) added that induces HCC mainly by causing dose dependent association between the number of putative high-risk genotypes in the IL-1β, TNFα and HCC. Genetic variations in cytokines and DNA repair genes contributes to susceptibility to HBV related HCC.

The present study showed that serum levels of TEARS-MDA equivalent NO showed the highest levels in patients with HCC B+C compared to all studied groups.

Cytokines such as IL-1β and TNF-α activate the vascular smooth muscle cells to produce nitric oxide.
Moreover, Majamo et al. (1998) and Ahn et al. (1999) reported that hepatotropic viral infections are able to upregulate the number of gene expressions in human hepatocytes. So, the authors suggested that NO may mediate important pathogenic events in the course of chronic viral hepatitis.

Laskin et al. (2001) reported that in many models of liver damage nitric oxide and its oxidation products, such as peroxynitric, contribute to the injury process by directly damaging the tissue or by initiating additional immunologic reactions that result in damage.

Balance between protooncogene and suppressor genes is disturbed in HCC. Loginov et al. (2001) reported that protooncogene C-fos was high in HCC tumor tissue.

Osman et al. (2005) had reported that that Egyptian HCC patients on top of HCV showed significant higher level of serum P53 immunohistochemical staining of tumor tissue and insulin like growth factor than negative HCV, HCC patients and both had higher levels than normal controls. They explained these results by mutation of P53 in HCC patients especially those with positive HCV thus leading to sharp increase in P53 protein levels, but abolishes function of P53 in tumor cells.

So HCC may result from step use process involving different preneoplastic lesion that reflect multiple genetic events such as tumour suppressor gene inactivation and growth factors over or reexpression.

Thus increased protooncogenes, decreased or distrubed function of suppressor genes, growth factor genes, virological factors via cytokines and oxidative stress have been implicated in hepatocarcinogenesis, which is subsequently multifactorial pathology.

The pathological study of the liver biopsies of 28 patients suffering from hepatocellular carcinoma with HCV infection revealed that 15 are grade II and 13 are grade III.

Patients with HCC associated with HCV infection showed, positive correlation between TNF-α and IL-1β, IL-6, alpha fetoprotein, serum bilirubin, alkaline phosphatase and tumour grading, and between each others, while negative correlation was noted between prothrombin concentration and serum albumin in one side and IL-6, S. bilirubin, alkaline phosphatase, and tumour grading on the other side. This means that the more advanced the HCC is, the more the reflection by cytokines, the pathological grading, and effect on the synthetic function of the liver.

However, no correlations were found between the studied parameters, the ages of the patients and the tumor sizes.

Bilharziasis per se is not a documented risk factor for increasing the serum levels of any of the previous studied parameters.

Also, regarding the pathological grading of HCC on top of HCV, there was no evident statistical difference between the group of patients with concomitant bilharzial infection and the group without bilharzial infection. Thus, Egyptian bilharziasis does not seem to play a role in hepatic carcinogenesis.

However, the levels of studied parameters in hepatocellular carcinoma associated with HCV infection, does not show any significant differences compared to their levels in hepatocellular carcinoma with HBV, which may be attributed to the same role of the two viruses in induction of such molecules.

Conclusion

Guarding against HCC development on top of HBV must require vaccination against HBV infection.

Also, further work must be done to reach an effective vaccine against HCV.

Patients with HCV or HBV infection should provided with anti-inflammatory drugs or cytokine antagonists aiming to guard against HCC. Moreover, our work supports that antioxidants have a role in protection against hepatic carcinogenesis.

References

Cytokines, Lipid Peroxide and Nitric Oxide in Egyptian……..

العوامل المؤدية إلى انتشار سرطان الكبد في مصر الإصابة بفيروس سي أو بي

عِمّايت عزت عثمان - فاطمة محمد مصطفي مبروك - هدى عبد الباسط حسن
سمية أبو اليزيد - نجية سالم - جلال أحمد
قسم الباطنة العامة - مستشفى الزهراء الجامعي - جامعة الأزهر
قسم الكيمياء الحيوية - جامعة أسيوط
قسم البيولوجيا الإكلينيكي - جامعة الأزهر

يعتبر سرطان الكبد من أكثر الأورام السرطانية شيوعا في البلاد النامية كما تعتبر العوامل المؤدية إلى سرطان الكبد عامل محدد ومترجع عليها لكن مازالت ميكانيكية تسرطن خلايا الكبد غير مكتشفة حتى الآن ويدو أنها تختلف بأدوات المسبب.
ومن العوامل المؤدية إلى سرطان الكبد الإصابة بفيروس سي أو بي أو الإصابة بالأثنين معا وذلك عن طريق الدور الذي تلعبه السيتوكينات والعوامل الوسامة في كل من خلايا الكبد المحمية أو حتى الطبيعية.

وتحاول هذه الدراسة المقدمة القاء الضوء على بعض هذه السيتوكينات مماثلة في عامل النخر الورمي ألفا إنترلوتين واحد بنيا بإنترلوتين 6 بقياسهم في 9 مرضى المصابين بسرطان الكبد شاملا بعض المرضى المصابين بفيروس سي أو بي أو كلاهما معا في نفس الوقت أو غير المصابين بأي فيروس على الإطلاق كما تحاول هذه الدراسة معرفة دور كل من دلال الأجساد الفوق الدهنية وكذلك أكسيد النتروجين كعوامل حماية ووقاية أو كعلاج مستقبلي في هذه الحالات:

وقد أجريت هذه الدراسة على 98 مريضا يعانون من الإصابة بسرطان الكبد مقسمين إلى:

- المجموعة الأولى: - وتضمن 28 مريضا يعانون من سرطان الكبد مع الإصابة بفيروس سي.
- المجموعة الثانية: - وتضمن 11 مريضا يعانون من سرطان الكبد مع الإصابة بفيروس سي.
- المجموعة الثالثة: - وتضمن 10 مرضى مصابين بسرطان الكبد مع الإصابة بفيروس سي.
- المجموعة الرابعة: - وتضمن 9 مرضى مصابين فقط بسرطان الكبد دون أن يصاحبهما الأصابة بفيروس سي أو فيروس بي.
- المجموعة الخامسة: - وهي المجموعة الضابطة وتشمل 40 شخص ذو صحة سليمة مماثلين للمجموعات السابقة من حيث أعمارهم ومستواهم الاجتماعي.

وقد تم قياس كلي من المواد التالية في دم هؤلاء المرضى عامل النخر الورمي ألفا إنترلوتين، إنترلوتين 6 أكسيد النتروجين - دلال الأجساد فوق الدهنية إلى جانب قياس البروتين الجنيبي ألفا ووظائف الكبد قد أجريت أيضا دراسة هستوباثولوجية لعينات كبدية أخذت من المرضى المصابين بسرطان الكبد المصاحبة بالإصابة بفيروس سي نظرا لشروع هذه الحالات.

وقد دارت نتائج هذه الدراسة على زيادة كل من عامل النخر الورمي ألفا إنترلوتين واحد بنيا إنترلوتين 6 أكسيد النتروجين، دلال الأجساد فوق الدهنية في مختلف
Cytokines, Lipid Peroxide and Nitric Oxide in Egyptian…….

Molecular markers of comparison by the group. While, cytokines, lipid peroxide and nitric oxide are not to be taken lightly. Starting with this study, there is an increase in the incidence of liver cancer in the comparison group with the contribution of interferon, in the second group, due to the change in the liver fibrosis of patients with liver cancer by contrast with the absence of interferon.

We also observed the results that are also due to the elevation of enzymatic activity in comparison to a group that is not exposed to interferon.

The protein gene alpha and the albumin gene in the group of healthy patients. We noticed that this increase in activity of interferon is in the group of interferon, due to the comparison of two groups, in the group of healthy patients by contrast with the group of interferon.

We also observed the results that are also due to an increase in the enzymatic activity in comparison to a group that is not exposed to interferon. This is also due to the enzymatic activity in the group of healthy patients by contrast with the group of interferon.

In the third phase of the study, the comparison was done in the group of healthy patients by contrast with the group of interferon. The test used was the liver biopsy from the patients and the results were expressed in the following:

- There was a decrease in the number of fibrosis in the group that is not exposed to interferon.
- There was an increase in the number of fibrosis in the group that is exposed to interferon.
- There was a decrease in the number of fibrosis in the group that is not exposed to interferon.
- There was an increase in the number of fibrosis in the group that is exposed to interferon.

And in this phase, we used a test to determine the level of interferon in the group of healthy patients by contrast with the group of interferon.

At the end of the study, we concluded that:

- The use of interferon in the treatment of liver cancer is effective.
- The use of interferon in the treatment of liver cancer is not effective.
- The use of interferon in the treatment of liver cancer is not recommended.

In conclusion, this study is the result of a study that aims to determine the activity of interferon in the treatment of liver cancer.

The study was conducted on a group of patients with liver cancer, where interferon was administered to one group, while the other group did not receive interferon. The results showed a decrease in the number of fibrosis in the group that received interferon, while the group that did not receive interferon showed an increase in the number of fibrosis.

This study demonstrates the effectiveness of interferon in the treatment of liver cancer, and highlights the importance of using interferon in the treatment of this disease.
المستوى الكبدية سواء المصابين بالسرطان أو غيرها باستخدام المواد المانعة للأسیدة مثل فيتامين سي وجلوتاثيون وفيتامين Е مع وجبة تعميمها.

جعل التطعيم ضد فيروس بي اجباريا.

تکشف الجهود لأکتشاف مصل ضد فيروس سي الاجتماعى التي لها علاقة بالموت المبرمج للخلايا والتكوين الجدید للأوعية الدموية قد يكون لها دورا فعالة في تلك الحالات.